Эксперимент КЕДР

В. Блинов

Институт Ядерной Физики им. Будкера СО РАН

Комплекс ВЭПП-4М

Метод резонансной деполяризации с измерением частоты деполяризации по

- Е<3ГэВ: внутрисгустковое рассеяние $\triangle E/E = (5 \div 15) \times 10^{-6}, (10 \div 30)$ кэВ За время эксперимента проведено 3089 калибровок энергии
- E>3ГэВ: ассиметрия рассеяния циркулярно поляризованных лазерных фотонов
- Создана новая система сбора, обработки и хранения данных
- Идет изготовление и запуск нового GEM–детектора
- Проведены первые калибровки энергии на *E* = 4 ГэВ

Детектор КЕДР

 Все системы детектора находятся в адекватном для выполнения физической программы состоянии

- Модернизация инженерных систем детектора
- Модернизация системы сбора данных детектора
- Лазерный поляриметр
- Система регистрации рассеянных электронов (позитронов)
- Новая дрейфовая камера
- Тестовый пучок электронов на ВЭПП-4

Система регистрации рассеянных электронов (позитронов)

- Система работает в составе детектора
- Непрерывно работает система лазерной и ВGO калибровки СРРЭ

В 2018 году сделано:

- Разработано, изготовлено и включено в работу 12 двух-хитовых Т-плат для DAQ СРРЭ. Это позволит уменьшить потери из-за наложения событий при работе на большой светимости (Ю.В. Усов, А.И. Текутьев, сек. 3-12). Проверка качества работы плат пока не закончена. Планируется замена всех 90 Т-плат.
- Произведено несколько модификаций триггера для повышения эффективности при работе с большой светимостью.
- Переписана программа реконструкции треков в СРРЭ для полноценного использования GEM'ов. Улучшены алгоритмы построения треков в условиях большого фона и перекрёстных наводок.
- Продолжается работа по автоматизации энергетических калибровок СРРЭ с использованием лазеров и BGO.

Новая дрейфовая камера

• Корпус ДК собран, преднатяжение создано. Идёт процесс вклейки торцов.

 Прогиб торцевых пластин под действием преднагрузки 3.86 т.

 Пины, инструмент для фиксации проволочек в пинах изготовлены.

Новая дрейфовая камера

 Сектора предусилителей изготовлены и проверены. Платы оцифровывающей электроники 50 шт. в производстве. Сектора ВВ питания (делители, кабельная трасса) изготовлены и проверены.

- Отработана технология натяжения проволоки на модели ячейки.
- Сигнальный кабель: конструкция кабеля согласована по спецзаказу на ОАО НП "Подольск-Кабель"
- Планируется изготовление экранной проволоки диаметром 70 мкм на АО "Денисовский завод"

Параметры пучка

- Диапазон энергий: 100 ÷ 3500 МэВ
- Энергетический разброс: 7.8 ÷ 2.9 % (100 ÷ 3000 МэВ)
- Точность определения энергии: лучше 1.8 % (≥ 1000 МэВ)
- Средняя скорость счета: 100 Гц

- В 2018 году проведено 15 смен:
 - Тестирование прототипов координатных детекторов на базе ГЭУ
 - Исследование временного разрешения и эффективности регистрации приборов на основе МКП
 - Работы с прототипом системы идентификации ФАРИЧ–3

Физические задачи

- Измерение масс элементарных частиц
 - Низкая энергия: J/ψ , $\psi(2S)$, $\psi(3770)$, D^0 , D^\pm -мезоны, au-лептон
 - Высокая энергия: $\Upsilon(1s), \Upsilon(2s), \Upsilon(3s), \Upsilon(4s)$ мезоны
- Измерения лептонных ширин ψ и Υ мезонов
- Измерение R в области 2E = 2 ÷ 10 ГэВ
- Измерение сечения $\gamma\gamma
 ightarrow hadrons$ и другие 2γ -процессы
- Ряд других процессов

- I сканирование области 2*E* = 4.5 ÷ 7.0 ГэВ: *LT* = 7.4 пб⁻¹, (выполнено)
- ІІ сканирование области $2E = 4.5 \div 7.0$ ГэВ: $LT = 5 \, \text{n}6^{-1}$, (не выполнено)
- Пробный набор на $\Upsilon(1S)$ -мезоне, 2E = 9.46 ГэВ, (не выполнено)

- Набор статистики в сезоне 2017÷2018 был неэффективным

 Необходима работа по повышению эффективности работы комплекса (учет времени работы, поломок и др.)

Результаты измерение R в области 2E = 2.8 ÷ 5.0 ГэВ

Измерение R при 2 $E=1.84\div 3.7$ ГэВ, $\int L dt\simeq 2.05$ пб $^{-1}$

Measurement of R_{uds} and R between 3.12 and 3.72 GeV at the KEDR detector. Phys. Lett. B **753** (2016) 533-541 (Тодышев К.Ю., докторская диссертация) co

C.

Параметры J/Ψ – мезона

 $\Gamma_{ee} = (5.550 \pm 0.056 \pm 0.080)$ кэВ

 $\Gamma_{ee} imes B_h = (4.884 \pm 0.048 \pm 0.078)$ кэВ

 $\Gamma_{ee} imes B_{ee} = (0.3331 \pm 0.0066 \pm 0.0004)$ кэВ

 $\Gamma = (92.94 \pm 1.83)$ кэВ, ($\Gamma_{ee} = (5.55 \pm 0.14 \pm 0.02)$ кэВ, PDG 2016)

Measurement of $\Gamma_{ee}(J/\psi)$ with KEDR detector, J. High Energ. Phys. (2018) 2018:119 (Харламова Т.А., диссертация)

cə

🔇 Результаты 2018

Параметры $\Psi(2S)$ – мезона

$$\begin{split} & \mathsf{\Gamma}_{ee} \times B_{\mu\mu} = (19.3 \pm 0.3 \pm 0.5) \; \mathsf{э}\mathsf{B}, \; \mathsf{KEДP} \\ & \mathsf{\Gamma}_{ee} \times B_{\mu\mu} = (18.5 \pm 2.1) \; \mathsf{э}\mathsf{B}, \; \mathsf{PDG} \\ & \mathsf{\Gamma}_{ee} = (2.282 \pm 0.015 \pm 0.042) \; \kappa \mathsf{э}\mathsf{B} \end{split}$$

Measurement of $\Gamma_{ee} \times \mathcal{B}_{\mu\mu}$ for $\psi(2S)$ meson. Physic Letters B. Volume 781, 2018, p. 174-181. (Сухарев А.М., защищена диссертация в 2018 году)

Сессия ИЯФ СО РАН - 2019

co

Результаты по $\gamma\gamma$ – физике

В 2018 году:

- Проведена обработка $ee \rightarrow ee + LL$ на статистике \approx 6 пб $^{-1}$.
- При удовлетворительном согласии эксперимента и моделирования для *ee* → *ee* + µµ наблюдается превышение моделирования над экспериментом для *ee* → *ee* + *ee* при 200 < w_{inv} < 400 MэB.</p>
- Генератор *ee* → 4*L* Берендса и др. проверен и доработан с использованием матричных элементов, полученных А.И. Мильштейном и П.А. Крачковым. Результаты для *ee* → *ee* + *ee* подтвердились.
- В генератор встроен процесс $ee \rightarrow 2\mu 2\pi$ и учтён вклад узких резонансов, он уже используется в обработке данных BELLE и пригодится на $c\tau$ -фабрике.

Ведутся анализы

- $Br(J/\psi \rightarrow \gamma \eta_c)$
- $Br(J/\psi \rightarrow \gamma \pi^+ \pi^-)$, $Br(J/\psi \rightarrow \gamma K^+ K^-)$, $Br(J/\psi \rightarrow \gamma p\bar{p})$
- Измерение масс *D*-мезонов
- Двухфотонное рождение $e^+e^-, \ \mu^+\mu^-$, адроны

В 2018 году

- Опубликовано 6 работ (4 по ФЭЧ + 2 по методике)
- Защищена 1 диссертация (Сухарев А.М.)

C ()

cə

- Сканирование области 2E = 4.5 ÷ 7.0 ГэВ, ∫Ldt = 5 пб⁻¹.
 Измерение R.
- Набор статистики при

$$2E = 9.46 \ \Gamma \Rightarrow B, \quad \Upsilon(1S) \\ 2E = 10.02 \ \Gamma \Rightarrow B, \quad \Upsilon(2S) \\ 2E = 10.36 \ \Gamma \Rightarrow B, \quad \Upsilon(3S) \end{cases} \begin{cases} \int L dt = 10 \div 30 \ \text{n}6^{-1} \end{cases}$$

- Набор при 2*E* = 8.0 ÷ 10* ГэВ, *∫Ldt* = 200 пб⁻¹. Двухфотонная физика.
 - Повышение энергии до 5 ГэВ в пучке позволит обогатить физическую программу измерением масс и лептонных ширин семейства мезонов при наборе интеграла светимости для двухфотонной физики.

- Завершено выполнение физической программы при 2E < 4ГэВ
- Начат набор статистики при $2E = 4.5 \div 10$ ГэВ
- Для выполнения физической программы на этой энергии требуется кратно повысить надежность работы комплекса ВЭПП–4М и набрать $\int L dt \simeq 200 250 \text{ n6}^{-1}$.

Команда установки детектор "КЕДР" - январь 2014 (фото А.А. Осипова)

Спасибо за внимание

Market Market

Luminosity is scaled to E=1900 propto E⁴

эксперимент	дата		Светим	кпд	Распределение времени							
			ВЭПП-4	КЕДР		набор	ка-	не на	настр.		неисправности	н
				исп./запис			либр	КЕДР	реж.	всего	КЕДР	ВЭПП-4
$\psi(3770)$	27 нояб — 10 дек	14 дней	316	223	88%	42%	11%	8%	11%	5%	63%	47%
R-2	18 дек — 30 дек	43 дня	750	450/484	74%	47%	8%	18%	14%	14%	8%	94%
R-4	30 дек — 8 фев	9 дней	850	345/571	75%	82%	6%	0%	0%	48%	92%(CSI)	8%
R-6	9 фев — 2 март	21 день	1156	544/787	75%	35%	7%	39%	1%	45%	78%(ДК,TRG)	22%
R-8	3 марта — 11 марта	8 дней	922	599/636	77%	77%	4%	0%	2%	17%	55%(ДK)	43%
R-10	11 марта — 8 апреля	28 дней	882	618	78%	26%	8%	26%	3%	36%	2%(ВД)	98%
R-12	8 апреля — 23 апреля	14 дней	1341	904	73%	60%	6%	23%	1%	9%	19% (ДК)	81%
R-14	23 апреля — 1 мая	8 дней	1294	1003	84%	78%	7%	0%	6%	10%	29%(MK)	71%
R-16	2 мая — 24 мая	22 дня	1027	765	87%	26%	6%	60%	3%	6%	1%	98%
R-10	24 мая — 2 июня	9 дней	930	763	87%	43%	13%	9%	29%	4%	9%(CSI)	91%
R-4	3июня — 18 мая	15 дней	442	332	90%	26%	3%	52%	10%	9%	22%(ДK)	80%
всего за сезон	27 ноября 2017 — 21 июня 2018	206 дней	10430	6546/7449	80%	40%	6%	28%	7%	13%	16%	84%

Таблица 1: Работа КЕДР/ВЭПП-4 в сезоне 2017-2018 года

Таблица 2: Рабата КЕДР/ВЭПП-4 в разных сезонах

эксперимент	дата		C ветимость, $H \delta^{-1}$		КПД	Распределение времени						
			ВЭПП-4	КЕДР		набор	ка-	не на	настр.	H	еисправн	ости
				исп./запис			либр	КЕДР	реж.	всего	КЕДР	ВЭПП-4
ψ scan	6 окт. 2006 — 3 февр 2007	120 дней	7352	6256	89%	62%	26%	5%		7%	32%	62%
$\psi(3770)$	10 февр 2017 — 11 июня 2017	121 день	3291	2734	84%	39%	5%	27%	9%	7%	25%	68%
R scan	27 ноября 2017 — 21 июня 2018	206 дней	10430	6546/7449	80%	40%	6%	28%	7%	13%	16%	84%

Отчёт о работе комплекса ВЭПП-4М/КЕДР с20/12/201700:00:00 по21/06/201800:00:00 ($183~{\rm days})$

Результаты					
Записанная светимость	7226.07 нб ⁻¹				
КПД детектора КЕДР	79.46 %				
Произведённая светимость	10114.25 нб^{-1}				
Средняя светимость	$237.88 \cdot 10^{28} \text{ cm}^{-2} \cdot \text{c}^{-1}$				
Число калибровок энергии	13 mt.				
Среднее время на калибровку	5 hours 11 mins				
Средний КПД перепуска (e^{-}/e^{+})	68.5~%~/~61.9~%				

Распределение времени		183 days
Набор статистики	42%	76 days 1 hour
Калибровка систем	6%	10 days 13 hours
Калибровка энергии	2%	2 days 19 hours
Работа не на КЕДР	5%	9 days 9 hours
Профилактика	3%	5 days 17 hours
Работа не на КЕДР - СИ	22%	40 days 16 hours
Настройка режима ВЭПП	6%	10 days 22 hours
Неисправности	15%	26 days 19 hours
в том числе:		
– КЕДР	14%	3 days 20 hours
– ВЭПП	85%	22 days 16 hours
– КЕДР + ВЭПП	1%	5 hours 4 mins

Поломки КЕДРа							
КЕДР	14%	3 days 20 hours					
Systems	87%	5 days 8 hours					
Vertex detector	16%	19 hours 54 mins					
Drift chamber	31%	1 day 15 hours					
Time of flight	5%	6 hours 47 mins					
CsI calorimeter	3%	3 hours 23 mins					
LKr calorimeter	36%	1 day 21 hours					
Muon system	2%	2 hours 26 mins					
Luminosity system	0%	15 mins					
Tagging System	2%	2 hours 50 mins					
Aerogel threshold counters	0%	38 mins					
Trigger system	5%	6 hours 30 mins					
Computers	9%	13 hours 13 mins					
Soft	89%	11 hours 49 mins					
PC	8%	1 hour 1 min					
VAX	0%	0					
Service	1%	48 mins					
Инженерия	0%	0					
Кондиционер	0%	0					
Электроснабжение	100%	48 mins					
Криогеника	0%	0					
Магнитная система	0%	0					

Для стыковки с данными других экспериментов необходимо измерение сечения $\gamma \gamma \rightarrow hadrons$ до $W_{\gamma \gamma} = 4$ ГэВ