Эксперименты с СИ на ВЭПП-3 и ВЭПП-4М в 2017 г

Научная сессия ИЯФ 2018

Источники СИ в ИЯФ СО РАН

СИ - ВЭПП-4М

- 10 "Космос" (метрологическая станция ВУ₫ и мягкого рентгеновского диапазона 10-2000 эВ)
- 8а «Фазоконтрастная микроскопия и микротомография» и элементный анализ
- "Взрыв-2" (наносекундная 8Ь диагностика)
- 8с «Плазма»

СИ - ВЭПП-З

элементный анализ

Малоугловое рассеяние

EXAFS-спектроскопия

Прецизионная дифрактометрия-2

Диагностика и обратная связь

OЬ

2 3

4

5a

5b

6a

6b

7

8

Заb Прецизионная дифрактометрия и малоугловое рассеяние (в стадии запуска)

Календарь 2017

	ЯНВАРЬ ФЕВР						РАЛЬ	2		MAPT						АПРЕЛЬ					
пн				_5		5		j	3	0	_7		ز	3	4	_7		3	_0	_7	_4
вт		3	10	17	24	31		7	14	21	28		7	14	21	28		4	11	18	25
ср		4	11	18	25		1	8	15	22		1	8	15	22	29		5	12	19	26
чт		5	12	19	26		2	9	16	23		ø	9	16	23	30		6	13	20	27
пт		6	13	20	27		3	10	17	24		<i>by</i>	10	17	24	31		7	14	21	28
сб		7	14	21	28		4	11	18	25	1		11	18	25		1	8	15	22	29
вс	1	8	15	22	29		5	12	19	26		5	12	19	26	< ƏL	2	9	16	23	30

	МАЙ				V	1ЮН	Ь		июль					АВГУСТ							
пн	1	კ	15	_2	29			ز	12	- 19	26		~	10	N	24	31	\times	14	21	28
вт	2	9	16	23	30			6	13	20	X		4	M	18	25		8	15	22	29
ср	3	10	17	24	31			7	14	21	28		5	12	19	26	X	9	16	23	30
ЧΤ	4	11	18	25			1	8	15	22	29		6	13	20	27	3	10	17	24	31
пт	5	12	19	26			2	9	16	28	30		\times	14	21	28	4	11	18	25	
сб	6	13	20	27			3	10	. 17	24		X	8	15	22	29	5	12	19	26	
вс	7	14	21	28			4	11	18	25		Z	9	16	23	30	6	13	20	27	ĺ

		CE	нтяе	БРЬ			Oŀ	ктяб	РЬ				НОЯ	БРЬ				ДE	КАБ	РЬ		
пн		$ \mathcal{A} $	M	8	-5		X		-15	22	29			-3	00	7ء		+		-18	25	B
ВТ		3	22	19	26		X	X	16	23	30		\times	14	21	28		5	12	19	26	Ŭ
ср	_	6	13	20	27		X	10	17	24		\mathbf{X}	8	25	22	29		6	18	20	27	5
чт		\times	14	21	28		\mathbf{A}	M	18	25		X	9	16	23	30		7	14	21	28	0
пт	X	8	15	22	29		5	12	19	26		3	10	N	24		1	8	15	22	29	ě
сб	2	9	16	ગ્ર	30		6	13	20	27		$\left \right\rangle$	N	18	25		2	9	16	23	30	្រ
BC	X	20	X	<u>эц</u>		\mathbf{X}	\times	14	21	28		3	32	19	26		3	10	17	24	31	4
He cn	вс <u>жжжі ка 21 28</u> <u>ж 22 26 3 10 17 24 31</u> Не смотря на отсутствие работ во второй половине <u>У</u>																					

2017, были проведены следующие операции:

- Установлен новый вигглер на ВЭПП-4М
- Модернизирована система охлаждения
- Отлажен устойчивый режим работы на 4.5 ГэВ
- Проведена модернизация программного обеспечения в системе управления ВЭПП-3

1	др. программы : ВЭПП-4, КЕДР и остановки								
2	отработанно на СИ ВЭПП-3								
3	СИ ВЭПП-3 + СИ ВЭПП-4 , низкая энергия								
4	планируется СИ - 3								
5	СИ ВЭПП-4, 4 ГэВ								
6	внезапные смены ВЭПП-3								
X	заметные потери на аварийный ремонт								
8	профилактика поломка 0.5 смены								
	1/41/2 смены дневная смена								

Эффективность заходов 2017

■ ВЭПП-4М (4 ГэВ) ■ ВЭПП-3

Совмещенная работа ВЭПП-3 и ВЭПП-4М

Новый вигглер

Параметр	Старый вигглер	Новый вигглер
Максимальное поле	1.2 Тл	1.9 Тл
Период	20 см	14 см
Полное количество полюсов	7	9
Магнитный зазор	40 mm	30 мм

Станция рассеяния СИ "Плазма"

Оборудование:

УАБ лазер (энергозапас 50 Дж, длительность 140 мкс), Подвижки образца, детектора и так далее, Детектор DIMEX,

Вакуумная камера, Пирометр.

Станция рассеяния СИ "Плазма"

- Цель создания станции: разработка диагностики деформаций и напряжений в материале во время импульсной тепловой нагрузки по дифракции Лауэ.
- Особенности: временное разрешение, измерение внутри материалов, разрешение по глубине.
- Достижения:
 - измерение динамики формы дифракционного пика при импульсной тепловой нагрузке,
 - измерение дифрактограммы за один банч ВЭПП-4.

Dmin = π /q max = λ /(40max) \approx 4,0 nm,

Dmax = $\pi/\text{qmin} = \lambda/(4\theta \text{min}) = \sim 240 \text{ nm}.$

Схема измерения МУРР. К1 и К2 – ножи, формирующие пучок SR размером 20 x 0,5 мм, R3 – нож, закрывающий прямой пучок SR, SAXS – рассеянное излучение SR, D - детектор DIMEX-3. h - расстояние между пучком SR и метаемой пластиной. 1 исследуемая пластина; 2 – ускоряющий заряд; 3 – плосковолновая линза; 4 – порошковый тэн.

Обнаружение наночастиц в кумулятивных струях неустойчивостях Рэлея-Тейлора

Динамика распределений МУРР при движении фольги из олова. По оси X угол рассеяния 20 в mrad. Время между кадрами 600 нс.

Зависимость интенсивности МУРР от q². Черная линия по формуле Гинье дает размер наночастиц порядка 90 нм.

Быстрые динамические процессы

Экспериментальные данные по росту размеров наноалмазов во время детонации тротила. В 2017 г данные были подтверждены американскими экспериментаторами.

Экспериментальный узел для измерения распределения плотности пылевого облака и регистрации в нём наночастиц. 1 заряд BB, 2 - образец из олова с возмущениями (нанесённый профиль), 3 пьезодатчик Динамика поведения имплантированной мыши опухоли глиомы человека после микропучкового облучения совместно с применением наночастиц оксида марганца

Исследования терапевтической эффективности в условиях гипоксии

Разностная радиография и дифрактометрия invivo

Висмут трикалия дицитрат (ВТД) К-край Ві 90.5 кэВ детектор МИК-1 от МЦРУ «Сибирь-Н» [6]. Размер пиксела – 0.2*0.2 мм

Исследования особенностей растворения и поглощения препаратов (ВТД De-Nol и др.) и механизмов их воздействия

450

Станция прецизионной дифрактометрии в жестом рентгеновском диапазоне

•Исследование поликристаллических материалов с высоким угловым разрешением и с использованием эффекта резонансного рассеяния.

•Исследование поликристаллических и аморфных материалов методами интегрального анализа дифрагированной интенсивности.

•Исследование упорядоченных структур, тонких пленок, многослойных покрытий, структуры поверхности в условиях скользящего падения излучения на образец.

Новое оборудование по проекту развития ЦКП

Составлены заявки на приобретение оборудования на сумму около 150 млн. руб. Первая часть оборудования поступила в 2017 г.

Полупроводниковый (HiGe) энергодисперсионный детектор ΔE=125 эВ (@5.9 КэВ)

Новое оборудование по проекту развития ЦКП

Оптический микроскоп VHX-5000

Исследование 3х мерных структур полученных рентгеновской литографией 450.70 250.00 0.00µm 0.00µm 250.00 500.00 600.94

Рост кристаллов CSI для сцинтиллятора

Планы на 2018 г.

- Проведение конференции SFR-2018
- Запуск новых станций
 - «Прецизионная дифрактометрия и рефлектометрия в жестском рентгеновском диапазоне»
 - Станция для обучения методикам с использованием СИ
- Модернизация станций
 - Прецизионная дифрактометрия и аномальное рассеяниепителя ВЭПП-3.
 - Локальный и сканирующий рентгенофлуоресцентный анализ ВЭПП-3
 - Станция «LIGA технология и рентгеновская литография ВЭПП-3
 - Метрологическая станция «Космос» ВЭПП-4М
- Аттестация 7 методик
- Общее количество ожидаемых публикаций не меньше 50
- Участие в работах по проектированию нового источника СИ и пользовательских станций